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c© Società Italiana di Fisica

Springer-Verlag 2000

Timelike and spacelike QCD characteristics
of the e+e− annihilation process

K.A. Milton1,a, I.L. Solovtsov1,2,b, O.P. Solovtsova1,2

1 Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 USA
2 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia

Received: 23 November 1999 / Published online: 6 March 2000 – c© Springer-Verlag 2000

Abstract. We consider the Adler D-function, which is defined in the spacelike region, and the e+e− an-
nihilation ratio smeared, according to the Poggio, Quinn, and Weinberg method, which is determined for
timelike argument. We show that the method of the nonperturbative a-expansion allows one to describe
these Euclidean and Minkowskian characteristics of the process of e+e− annihilation down to the lowest
energy scales.

1. In quantum chromodynamics, it is important to de-
termine the “simplest” objects which allow one to check
direct consequences of the theory without using model as-
sumptions in an essential manner. Comparison of theoret-
ical results for these objects with experimental data allows
us to justify transparently the validity of basic statements
of the theory, and make some conclusions about complete-
ness and efficiency of the theoretical methods used. Some
single-argument functions which have a straightforward
connection with experimentally measured quantities can
play the role of these objects. A theoretical description of
inclusive processes can be expressed in terms of functions
of this sort. Let us mention among them moments Mn(Q2)
of the structure functions in inelastic lepton-hadron scat-
tering and the hadronic correlator Π(s) (or the corre-
sponding Adler D-function), which appear in the pro-
cesses of e+e− annihilation into hadrons or the inclusive
decay of the τ lepton.

In this paper we consider such objects for the pro-
cess of e+e− annihilation into hadrons. Here, the point is
that the experimentally measured ratio of hadronic and
leptonic cross-sections, Re+e−(s), is not suitable at the
present stage of development of the theory to provide a de-
scription independent of model considerations. However,
it is possible to construct simpler objects than the Re+e− -
ratio. These are the Adler function D(Q2) [1], which is
defined in the Euclidean region, and the quantity R∆(s)
constructed by the Poggio, Quinn, and Weinberg “smear-
ing” method [2] and defined in the Minkowskian region.

The theoretical method, which we will use here, is
the nonperturbative expansion technique suggested in [3].
This approach is based on the idea of variational perturba-
tion theory (VPT) [4], which in the case of QCD leads to
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a new small expansion parameter. To compare the results
with experiment we will use the new “experimental data”
for the Adler function that has been recently obtained in
[5] and the smeared “experimental curve” corresponding
to the R-ratio taken from [6,7].

2. We use the method of constructing the so-called floating
or variational series in quantum theory. Within this ap-
proach, a certain variational procedure is combined with
the possibility of calculating corrections to the principal
contribution which allows the possibility of probing the
validity of the leading contribution and the region of ap-
plicability of the results obtained. At present, this idea
finds many applications in the development of various ap-
proaches, which should enable us to go beyond perturba-
tion theory. Among these are the Gaussian effective po-
tential method [8], the optimized δ-expansion [9], and the
VPT approach [4].

We will apply a nonperturbative QCD expansion based
on a new small expansion parameter [3]. Within this meth-
od, a quantity under consideration can be represented in
the form of a series, which is different from the conven-
tional perturbative expansion and can be used to go be-
yond the weak-coupling regime. This allows one to deal
with considerably lower energies than in the case of per-
turbation theory.

The new expansion parameter a is connected with the
initial coupling constant g by the relation

λ =
g2

(4π)2
=

αs

4π
=

1
C

a2

(1 − a)3
, (1)

where C is a positive constant. As follows from (1), for any
value of the coupling constant g, the expansion parameter
a obeys the inequality

0 ≤ a < 1 . (2)
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While remaining within the range of applicability of the a-
expansion, one can deal with low-energy processes where
g is no longer small.

The positive parameter C plays the role of an auxil-
iary parameter of a variational type, which is associated
with the use of a floating series. The original quantity,
which is approximated by this expansion, does not de-
pend on the parameter C; however, any finite approxi-
mation depends on it due to the truncation of the se-
ries. Here we will fix this parameter using some further
information, coming from the potential approach to me-
son spectroscopy. In the framework of this approach con-
sider the following approximations to the renormalization
group β-function, the functions β(3) and β(5), which are
obtained if one takes into consideration the terms O(a3)
and O(a5) in the corresponding renormalization constant
Zλ. As has been shown in [3], C is determined by requiring
that −β(k)(λ)/λ tends to 1 for sufficiently large λ, which
gives C3 = 4.1 and C5 = 21.5. The increase of Ck with
the order of the expansion is explained by the necessity to
compensate for the higher order contributions. A similar
phenomenon takes place also in zero- and one-dimensional
models. The behavior of the functions −β(k)(λ)/λ gives
evidence for the convergence of the results, in accordance
with the phenomenon of induced convergence.1 The be-
havior of the β-function at large value of the coupling
constant, −β(k)(λ)/λ ' 1, corresponds to the infrared sin-
gularity of the running coupling: αs(Q2) ∼ Q−2 at small
Q2. In the potential quark model this Q2 behavior is as-
sociated with the linear growth of the quark-antiquark
potential.

The renormalization group β-function of the expansion
parameter a

βa(a) = µ2 ∂ a

∂ µ2 =
2β0

C

1
F ′(a)

, (3)

where β0 = 11 − 2f/3 is the one-loop coefficient of the
β-function in the usual perturbative expansion, and f is
the number of active quarks, has a zero at a = 1 that
demonstrates the existence of the infrared fixed point of
the expansion parameter and its freezing-like behavior in
the infrared region. By finding the renormalization con-
stants in the massless renormalization scheme with an ac-
curacy O(a3), we find for the function F (a)

F (3)(a) =
2
a2 − 6

a
− 48 ln a− 18

11
1

1 − a

+
624
121

ln(1 − a) +
5184
121

ln
(

1 +
9
2
a

)
. (4)

By solving the renormalization group equation (3) we
find the momentum dependence of the running expansion
parameter a(Q2) as a solution of the following transcen-

1 It has been observed empirically [10] that the results seem
to converge if the variational parameter is chosen, in each
order, according to some variational principle. This induced-
convergence phenomenon is also discussed in [11].

dental equation

ln
Q2

Q2
0

=
C

2β0
[F (a) − F (a0) ] . (5)

For any values of Q2, this equation has a unique solution
a = a(Q2) in the interval between 0 and 1.

By working at O(a5) we obtain a more complicated
result

F (5)(a) =
1

5(5 + 3B)

3∑
i=1

xi J(a, bi) (6)

with B = β1/(2Cβ0), where the two-loop coefficient β1 =
102 − 3f/3, and

J(a, b) = − 2
a2b

− 4
ab2

− 12
ab

− 9
(1 − a)(1 − b)

+
4 + 12b+ 21b2

b3
ln a+

30 − 21b
(1 − b)2

ln(1 − a)

− (2 + b)2

b3(1 − b)2
ln(a− b) (7)

with
xi =

1
(bi − bj)(bi − bk)

. (8)

Here indices {ijk} are {123} and cyclic permutations. The
values of bi are the roots of the equation ψ(bi) = 0, where
the function ψ(a) is related to the β-function and is

ψ(a) = 1 +
9
2
a+ 2(6 + a)a2 + 5(5 + 3B)a3 . (9)

3. The cross-section for the process of e+e− annihilation
into hadrons, or its ratio to the leptonic cross-section,
R(s), is a physically measured quantity, defined for time-
like momentum transfer – the physical region of the pro-
cess. These quantities have a resonance structure that is
difficult to describe without model considerations. More-
over, the basic method of performing calculations in quan-
tum field theory, perturbation theory, becomes ill-defined
due to the so-called threshold singularities. Both these
problems can, in principle, be avoided if one considers a
“smeared” quantity. In the paper [2], Poggio, Quinn, and
Weinberg suggested that instead of using the ratio

R(s) =
1
2i

[Π(s+ iε) −Π(s− iε)] , (10)

defined through the hadronic correlation function Π(q2)
taken near the cut, which has a problem with threshold
singularities, the following smeared quantity be used:

R∆(s) =
1
2i

[Π(s+ i∆) −Π(s− i∆)] (11)

with some finite ∆. It has been argued in [2] that for
appropriate values of this smearing parameter (∆ is of
order of a few GeV2) it is possible to compare theoretical
predictions with smeared experimental data. To get these
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data one can use the dispersion relation for the hadronic
correlator Π(s) together with (11) to give

R∆(s) =
∆

π

∫ ∞

0
ds′ R(s′)

(s− s′)2 +∆2 . (12)

The corresponding “experimental” curves of R∆(s) have
been given in [6,7]. We will use these data to compare our
results with experiment.

However, a straightforward usage of conventional per-
turbation theory is still not possible. Indeed, by para-
metrizing, as usual, the QCD contribution to the func-
tion R(s) in (12) by the perturbative running coupling,
which has unphysical singularities, one encounters diffi-
culty with the definition of the integral on the right-hand
side. Moreover, the usual method of the renormalization
group gives a Q2-evolution law of the running coupling
in the Euclidean region and there is the question of how
to parametrize, in terms of the same scale parameter Λ,
a quantity, for example R(s), defined for timelike mo-
mentum transfer. Here an important role is played by
the analytic properties of the running coupling. Within
the nonperturbative a-expansion it is possible to maintain
such properties and self-consistently determine the effec-
tive coupling in the Minkowskian region [12]. Note that
the so-called analytic approach to QCD [13] also leads to
a well-defined procedure of analytic continuation from the
spacelike to the timelike domain [14,15]. By using the ana-
lytic approach the characteristics of the e+e− annihilation
process have been analyzed in [16,17].

Another function which characterizes the process of
e+e− annihilation into hadrons is the Adler function

D(Q2) = −Q2 dΠ(−Q2)
dQ2 = Q2

∫ ∞

0
ds

R(s)
(s+Q2)2

. (13)

Being defined outside of the resonance region, the D-func-
tion is the more useful object to test QCD both in the
ultraviolet perturbative region of large Q2 and in the non-
perturbative region of small Q2. Recently a new “exper-
imental” curve for this function has been obtained [5].
This curve is a smooth function of Q2 without any traces
of resonance structure, which makes it useful for compari-
son with reasonable theoretical descriptions. We will now
consider D(Q2) and R∆(s) in the framework of the non-
perturbative a-expansion.

In the massless case, let us represent these functions
in the form

D(Q2) = 3
∑

f

q2f
[
1 + d0λ

eff(Q2)
]

(14)

and
R(s) = 3

∑
f

q2f
[
1 + r0λ

eff
s (s)

]
. (15)

Here qf are the quark charges, d0 and r0 are the first per-
turbative coefficients which are renormalization scheme in-
dependent, being d0 = r0 = 4. For the D-function defined
in the spacelike region we can write down the effective cou-
pling in the form of the a-expansion which at the O(a5)

level has the form

λeff =
1
C
a2 +

3
C
a3 +

(
6
C

+
1
C2

d1

d0

)
a4

+
(

10
C

+
6
C2

d1

d0

)
a5 , (16)

where d1 is the next coefficient of the perturbative repre-
sentation for the D-function which we will take in the MS
renormalization scheme [19] to be

d1 =
2
3

[365 − 22f − 8ζ(3) (33 − 2f)]

' 16 (1.986 − 0.115f) . (17)

Here ζ(n) is the Riemann ζ-function, ζ(3) ' 1.202.
(15) serves to define the effective coupling in the time-

like domain or as we will say in the s-channel, which is
reflected in the subscript s. For self-consistency of (14)
and (15) with the dispersion representation in (13) it is
important to maintain the correct analytic properties of
the initial effective coupling λeff(Q2) [12,14,15]. In this
case one finds

λeff(Q2) = Q2
∫ ∞

0

ds

(s+Q2)2
λeff

s (s) (18)

and the corresponding inverse relation

λeff
s (s) = − 1

2πi

∫ s+i ε

s−i ε

dz

z
λeff(−z)

=
1

2πi

∮
|z|=s

dz

z
λeff(−z) . (19)

The s-channel running coupling can be written in the
form

λ(i)
s (s) =

1
2πi

1
2β0

[
φ(i)(a+) − φ(i)(a−)

]
, (20)

where a± obey the equation

F (a±) = F (a0) +
2β0

C

[
ln

s

Q2
0

± iπ
]
. (21)

At the level O(a3) the function φ(a) has the form

φ(3)(a) = −4 ln a− 72
11

1
1 − a

+
318
121

ln(1 − a)

+
256
363

ln
(

1 +
9
2
a

)
. (22)

Similarly, a more complicated expression for the O(a5)
level which we will use can be derived. Note here that,
as it has been recently argued from general priciples, the
behavior of the effective couplings in the spacelike and the
timelike regions cannot be symmetrical [18].

To incorporate quark mass effects, we use for the cross-
section ratio an approximate expression [2]

R̃(s) = 3
∑

f

q2f Θ(s− 4m2
f )T (vf ) [1 + g(vf )rf (s)] ,

(23)
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where the sum is performed over quark flavors and

vf =

√
1 − 4m2

f

s
, T (v) =

v(3 − v2)
2

,

g(v) =
4π
3

[
π

2v
− 3 + v

4

(
π

2
− 3

4π

)]
. (24)

The quantity rf (s) is defined by the s-channel effective
coupling λeff(s). The corresponding D-function can be
found from (13).

For massless, MS-like, renormalization schemes one has
to consider some matching procedure. To this end, one
usually adopts a procedure for matching the running cou-
pling in the Euclidean region [20] by requiring that the
running couplings, corresponding to (f − 1) and f num-
bers of fermions, should coincide with each other at some
matching point Q = ξ mf . For the matching parame-
ter ξ one usually takes 1 ≤ ξ ≤ 2. Obviously, in this
case the derivative of the running coupling will not be
a continuous function and the correct analytic properties
of the D-function will be violated. Instead we will apply
the matching procedure in the s-channel, where, at least
in the leading order, the number of active quarks is di-
rectly connected with the energy

√
s and discontinuously

changes at the threshold s = 4m2
f .2 The effective charge

in the Euclidean region, restored by the dispersion rela-
tion (18), will have the correct analytic properties and will
“know,” in a way similar to massive MOM renormaliza-
tion schemes, about all physical thresholds.

To perform this matching procedure, one can require
that the s-channel running coupling and its derivative be
continuous functions in the vicinity of the threshold. This
requirement leads to a system of equations, which we write
down for a simple O(a3) case:

1

βf−1
0

Imφ
(
af−1
+

)
=

1

βf
0

Imφ
(
af
+

)
, (25)

1
Cf−1

Im
[(
af−1
+

)2 (
1 + 3af−1

+

)]

=
1
Cf

Im
[(
af
+

)2 (
1 + 3af

+

)]
.

The function φ(a) is defined by (22) and a+ obeys (21).
Therefore, (25) allows one to establish relations between
the parameters Cf−1 , af−1

0 and Cf , af
0 .

Our results are presented in Figs. 1–4. In Figs. 1 and 2
we plot the smeared functions R∆(s) for ∆ = 1 GeV2 and
∆ = 3 GeV2 respectively. The solid line is the VPT next-
to-leading order (NLO) result which was normalized at the
τ lepton scale. To this end, we use the method of descrip-
tion of the τ decay suggested in [21,22] and take here the
following experimental average value Rτ = 3.642 ± 0.021
[23] as input. To demonstrate the fact of stability we show

2 In the framework of the analytic approach, where there
is also a well-defined procedure of analytic continuation, it is
possible to use the same s-channel matching method [15].

Fig. 1. The smeared function R∆(s) for ∆ = 1 GeV2. The
solid line corresponds to the VPT next-to-leading order (NLO)
result. The PMS result (the dashed curve) and the smeared
experimental curve (the dotted line) taken from [6]

Fig. 2. The smeared quantity R∆(s) for ∆ = 3 GeV2. The
solid, dashed and dotted curves are defined as in Fig. 1. The
dash-dotted curve corresponds to the leading VPT order

in Fig. 2 the leading-order (LO) VPT result. In these
figures we also plot, as dashed curves, results obtained
by using the principle of minimal sensitivity (PMS) to
optimize the third order of the perturbative expansion3

and the smeared experimental data, as dotted lines, taken
from [6]. For ∆ = 1 GeV2 the resonances in the e+e−
annihilation cross-section are not smeared enough, since
there are some peaks in the region of J/ψ meson family.
With increase in the value of ∆ the resonance structure is
smoothed and finally disappears. For a wider interval of
energy up to 35 GeV the smeared experimental data have
been recently obtained in [7]. We represent these data and
our NLO result in Fig. 3, where we also show the parton
model (PM) result as the dash-dotted curve.

The D-function defined in the Euclidean region for
positive momentum Q2 is a smooth function and thus it
is not necessary to apply any “smearing” procedure in
order to have the possibility of comparing theoretical re-
sults with experimental data. We plot our results in Fig. 4,
where we also show the experimental curve taken from [5]
and the parton model prediction. The shape of the in-
frared tail of the D-function is sensitive to the value of
the masses of the light quarks (the smeared R∆(s) func-
tion for∆ ' 1–3 GeV2 is less sensitive to the value of these

3 The PMS results correspond to a scale parameter Λ(f=3)

MS
=

281 MeV that is rather small as compared with more modern
value Λ(f=3)

MS
' 370 MeV [24], which is compatible with Rτ -

ratio used here.
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Fig. 3. The smeared quantity R∆(s) for ∆ = 3 GeV2. The
solid curve is the VPT result. The parton model (PM) predic-
tion is presented by the dash-dotted line and the experimental
curve from [7] is shown as the dotted line

Fig. 4. The plot of the D-function. The solid curve is the VPT
result. The parton model (PM) prediction is presented by the
dash-dotted line and the experimental curve from [5] is shown
as the dotted line

masses). In our calculations we use the following masses
mu = md = 250 MeV, ms = 400 MeV, mc = 1.3 GeV, and
mb = 4.7 GeV, which are close to the constituent quark
masses and incorporate, therefore, some nonperturbative
effects. Practically the same values of the quark masses
were used to describe the experimental data in [17,25].

4. In this paper we have applied the nonperturbative meth-
od of the a-expansion to describe the single-argument func-
tions which are directly connected with the experimental
data describing e+e− annihilation into hadrons. An im-
portant feature of this approach is the fact that for suffi-
ciently small value of the coupling (the ultraviolet region
of momentum) it automatically reproduces the conven-
tional perturbative results. We emphasize that the entire
high-energy physics regime is accessible within this ap-
proach. Even going into the infrared region of small mo-
mentum, where the running coupling becomes large and
the standard perturbative expansion fails, the a-expansion
parameter remains small and we do not find ourselves out-
side the region of validity of the approach.

We have considered two quantities that are convenient
both for the theoretical analysis and for the model-inde-
pendent comparison with experimental data. The first one
is the Poggio–Quinn–Weinberg smeared function, R∆(s),
defined in the Minkowskian region. The second one is
the Adler D-function defined in the Euclidean region. It
should be emphasized that the smeared quantity R∆(q2)

and the D-function have different sensitivity to QCD pa-
rameters. For example, in contrast to the smeared func-
tion taken with a reasonable value of the parameter ∆ the
shape of the D-function in the infrared region is very sen-
sitive to the values of the masses of the light quarks. At
the same time, for ∆ ' 2–3 GeV2, the function R∆(s) is
sensitive to the mass of charmed quark. Thus, these func-
tions can test different parameters of the theory and, in
some sense, are complementary to each other.

It should be stressed that in this approach we use the
parameters which are included in the Lagrangian and do
not introduce any additional model parameters. Never-
theless we found good agreement between our results and
the experimental data down to the lowest energy scale.
At the same time, note that a straightforward attempt
to apply the conventional operator product expansion,
which leads to the “condensate” term in the D-function,
a 〈αsG

2〉/Q4 contribution, is not satisfactory because of
the ill-definition of this expansion at small momentum.
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